Mathematische Komplexitätsreduktion (GRK 2297)
Laufzeit: 01.04.2017 bis 31.03.2026
Das Projekt wird von den genannten Principal Investigators getragen. Diese sind den Instituten für Mathematische Optimierung (Kaibel, Sager), für Algebra und Geometrie (Kahle), für Mathematische Stochastik (Kirch, Janßen) und für Analysis und Numerik (Benner, Richter, Heiland) der Fakultät zugeordnet. Benner ist zudem Direktor des Max-Planck Institutes für Dynamik komplexer technischer Systeme. Die Fakultät für Elektrotechnik und Informationstechnik ist über Findeisen beteiligt.
Im Kontext des vorgeschlagenen Graduiertenkollegs (GK) verstehen wir Komplexität als eine intrinsische Eigenschaft, die einen mathematischen Zugang zu einem Problem auf drei Ebenen erschwert. Diese Ebenen sind eine angemessene mathematische Darstellung eines realen Problems, die Erkenntnis fundamentaler Eigenschaften und Strukturen mathematischer Objekte und das algorithmische Lösen einer mathematischen Problemstellung. Wir bezeichnen alle Ansätze, die systematisch auf einer dieser drei Ebenen zu einer zumindest partiellen Verbesserung führen, als mathematische Komplexitätsreduktion.
Für viele mathematische Fragestellungen sind Approximation und Dimensionsreduktion die wichtigsten Werkzeuge auf dem Weg zu einer vereinfachten Darstellung und Rechenzeitgewinnen. Wir sehen die Komplexitätsreduktionin einem allgemeineren Sinne und werden zusätzlich auch Liftings in höherdimensionale Räume und den Einfluss der Kosten von Datenerhebungen systematisch untersuchen. Unsere Forschungsziele sind die Entwicklung von mathematischer Theorie und Algorithmen sowie die Identifikation relevanter Problemklassen und möglicher Strukturausnutzung im Fokus der oben beschriebenen Komplexitätsreduktion.
Unsere Vision ist ein umfassendes Lehr- und Forschungsprogramm, das auf geometrischen, algebraischen, stochastischen und analytischen Ansätzen beruht und durch effiziente numerische Implementierungen komplementiert wird. Die Doktorandinnen und Doktoranden werden an einem maßgeschneiderten Ausbildungsprogramm teilnehmen. Dieses enthält unter anderem Kompaktkurse, ein wöchentliches Seminar und ermutigt zu einer frühzeitigen Integration in die wissenschaftliche Community. Wir erwarten, dass das GK als ein Katalysator zur Etablierung dieser erfolgreichen DFG-Ausbildungskonzepte an der Fakultät für Mathematik dienen und zudem helfen wird, die Gleichstellungssituation zu verbessern.
Die Komplexitätsreduktion ist ein elementarer Aspekt der wissenschaftlichen Hintergründe der beteiligten Wissenschaftler. Die Kombination von Expertisen unterschiedlicher mathematischer Bereiche gibt dem GK ein Alleinstellungsmerkmal mit großen Chancen für wissenschaftliche Durchbrüche. Das GK wird Anknüpfungspunkte an zwei Fakultäten der OVGU, an ein Max Planck Institut und mehrere nationale und internationale Forschungsaktivitäten in verschiedenen wissenschaftlichen Communities haben. Die Studierenden im GK werden in einer Fülle von mathematischen Methoden und Konzepten ausgebildet und erlangen dadurch die Fähigkeit, herausfordernde Aufgaben zu lösen. Wir erwarten Erfolge in der Forschung und in der Ausbildung der nächsten Generation führender Wissenschaftler in Akademia und Industrie.
Mathematisches Komplexitätsreduktion (GRK 2297/1)
Laufzeit: 01.04.2017 bis 30.09.2021
Das Projekt wird von den genannten Principal Investigators getragen. Diese sind den Instituten für Mathematische Optimierung (Averkov, Kaibel, Sager), für Algebra und Geometrie (Kahle, Nill, Pott), für Mathematische Stochastik (Kirch, Schwabe) und für Analysis und Numerik (Benner) der Fakultät zugeordnet. Benner ist zudem Direktor des Max-Planck Institutes für Dynamik komplexer technischer Systeme. Die Fakultät für Elektrotechnik und Informationstechnik ist über Findeisen beteiligt.
Im Kontext des vorgeschlagenen Graduiertenkollegs (GK) verstehen wir Komplexität als eine intrinsische Eigenschaft, die einen mathematischen Zugang zu einem Problem auf drei Ebenen erschwert. Diese Ebenen sind eine angemessene mathematische Darstellung eines realen Problems, die Erkenntnis fundamentaler Eigenschaften und Strukturen mathematischer Objekte und das algorithmische Lösen einer mathematischen Problemstellung. Wir bezeichnen alle Ansätze, die systematisch auf einer dieser drei Ebenen zu einer zumindest partiellen Verbesserung führen, als mathematische Komplexitätsreduktion.
Für viele mathematische Fragestellungen sind Approximation und Dimensionsreduktion die wichtigsten Werkzeuge auf dem Weg zu einer vereinfachten Darstellung und Rechenzeitgewinnen. Wir sehen die Komplexitätsreduktionin einem allgemeineren Sinne und werden zusätzlich auch Liftings in höherdimensionale Räume und den Einfluss der Kosten von Datenerhebungen systematisch untersuchen. Unsere Forschungsziele sind die Entwicklung von mathematischer Theorie und Algorithmen sowie die Identifikation relevanter Problemklassen und möglicher Strukturausnutzung im Fokus der oben beschriebenen Komplexitätsreduktion.
Unsere Vision ist ein umfassendes Lehr- und Forschungsprogramm, das auf geometrischen, algebraischen, stochastischen und analytischen Ansätzen beruht und durch effiziente numerische Implementierungen komplementiert wird. Die Doktorandinnen und Doktoranden werden an einem maßgeschneiderten Ausbildungsprogramm teilnehmen. Dieses enthält unter anderem Kompaktkurse, ein wöchentliches Seminar und ermutigt zu einer frühzeitigen Integration in die wissenschaftliche Community. Wir erwarten, dass das GK als ein Katalysator zur Etablierung dieser erfolgreichen DFG-Ausbildungskonzepte an der Fakultät für Mathematik dienen und zudem helfen wird, die Gleichstellungssituation zu verbessern.
Die Komplexitätsreduktion ist ein elementarer Aspekt der wissenschaftlichen Hintergründe der beteiligten Wissenschaftler. Die Kombination von Expertisen unterschiedlicher mathematischer Bereiche gibt dem GK ein Alleinstellungsmerkmal mit großen Chancen für wissenschaftliche Durchbrüche. Das GK wird Anknüpfungspunkte an zwei Fakultäten der OVGU, an ein Max Planck Institut und mehrere nationale und internationale Forschungsaktivitäten in verschiedenen wissenschaftlichen Communities haben. Die Studierenden im GK werden in einer Fülle von mathematischen Methoden und Konzepten ausgebildet und erlangen dadurch die Fähigkeit, herausfordernde Aufgaben zu lösen. Wir erwarten Erfolge in der Forschung und in der Ausbildung der nächsten Generation führender Wissenschaftler in Akademia und Industrie.
Erweiterte Formulierungen in der Kombinatorischen Optimierung
Laufzeit: 01.10.2014 bis 31.12.2018
Die meisten für die kombinatorische Optimierung relevanten Polytope haben exponentiell in der Größe der Probleminstanz viele Facetten, so dass für den linearen Optimierungsansatz exponentiell viele Nebenbedingungen beachtet werden müssen. Das Konzept der erweiterten Formulierungen erlaubt es, Polytope als affine Projektionen höher-dimensionaler, aber wesentlich einfacher zu beschreibender Polyeder darzustellen. Das Ziel dieses Projekts ist, das grundlegende Verständnis des Konzepts der erweiterten Formulierungen signifikant zu verbessern und neue Methoden sowohl für die Konstruktion als auch für die Bestimmung unterer Schranken an die kleinste mögliche Größe solcher Formulierungen zu entwickeln.
Erweiterte Formulierungen in der Kombinatorischen Optimierung
Laufzeit: 01.10.2012 bis 30.09.2013
Die meisten für die kombinatorische Optimierung relevanten Polytope haben exponentiell in der Größe der Probleminstanz viele Facetten, so dass für den linearen Optimierungsansatz exponentiell viele Nebenbedingungen beachtet werden müssen. Das Konzept der erweiterten Formulierungen erlaubt es, Polytope als affine Projektionen höher-dimensionaler, aber wesentlich einfacher zu beschreibender Polyeder darzustellen. Das Ziel dieses Projekts ist, das grundlegende Verständnis des Konzepts der erweiterten Formulierungen signifikant zu verbessern und neue Methoden sowohl für die Konstruktion als auch für die Bestimmung unterer Schranken an die kleinste mögliche Größe solcher Formulierungen zu entwickeln.
Polyedrische Kombinatorik der Symmetriebrechung in der Ganzzahligen Linearen Optimierung
Laufzeit: 01.05.2009 bis 30.04.2012
Im Rahmen dieses Projektes werden grundlegende Fragen zu Symmetrien in der Ganzzahligen Linearen Optimierung untersucht. Insbesondere geht es dabei um die Beschreibung und Analyse von Polytopen, die Symmetrien beschreiben. Optimierungsprobleme, deren Lösungen Symmetrien aufweisen, führen in der Praxis häufig zu Problemen, da sie schlechte Schranken und ein schlechtes Enumerationsverhalten aufweisen. Ein besseres Verständnis der Polytope, die diesem Phänomen zu Grunde liegen, soll daher zu einer besseren Lesbarkeit dieser Probleme führen.
Erweiterte Formulierungen in der Kombinatorischen Optimierung
Laufzeit: 01.01.2010 bis 31.12.2011
Für viele kombinatorische Optimierungsprobleme sind die Beschreibungen der in natürlicher Weise zugeordneten Polytope notwendigerweise sehr kompliziert und groß. In machen Fällen kann man jedoch diese komlizierten Polytope als lineare Projektionen einfach zu beschreibender höher dimensionaler Polyeder darstellen und mit diesen Darstellungen in der gleichen Weise Theorie und Praxis der Linearen Optimierung für das vorliegende kombinatorische Optimierungsproblem nutzbar machen. In diesem Projekt leiten wir zum einen Methoden zum Aufstellen solcher erweiterter Formulierungen her und untersuchen zum andern, welche grundsätzlichen Grenzen dieser Methodik gesetzt sind.
Grundlegende Untersuchungen zu Orbitopen
Laufzeit: 01.01.2010 bis 31.12.2010
Orbitope sind Polyeder, die erfolgreich zur Ausnutzung von speziellen Symmetrien in ganzzahligen linearen Optimierungsproblemen benutzt werden. In diesem Projekt untersuchen wir grundlegende Fragen zu Orbitopen, also zu konvexen Hüllen von 0/1-Matrizen, die lexikographisch maximal in ihrem Orbit unter einer durch Spaltenpermutation operierenden Gruppe sind. Ziel des Projekts ist es, heraus zu finden, welche Einschränkungen an die 0/1-Matrizen die Orbitope so kompliziert werden lassen, dass man unter komplexitätstheoretischen Annahmen keine brauchbaren Beschreibungen erwarten kann, und andererseits für Klassen, bei denen dies nicht der Fall ist, Ungleichungsbeschreibungen herzuleiten.
Symmetrie und Dynamik in der gemischt-ganzzahligen Optimierung für biologische Anwendungen
Laufzeit: 15.05.2008 bis 14.05.2009
Die Einführung von zeitindizierten Variablen in der gemischt-ganzzahligen Optimierung zur Abbildung zeitlicher Dynamik wie zum Beispiel in biologischen Signal-Netzwerken führt zu Modellen, für deren effiziente Lösung eine spezielle Analyse der mathematischen Struktur erforderlich ist. Dabei muss in besonderer Weise die durch die Zeitindizierung in das Modell importierte Symmetrie untersucht und ausgenutzt werden. In diesem Projekt sollen zum Einen für die Symmetriebrechung in der ganzzahligen linearen Optimierung grundlegende Polytope untersucht werden und zum anderen anhand von Modellen für Signal-Netzwerke spezifische Verfahren zur Symmetrie-Ausnutzung in dynamischen gemischt-ganzzahligen Optimierungsproblemen entwickelt werden.
Enummeration und zufälliges Erzeugen
Laufzeit: 01.02.2007 bis 31.01.2008
Teilprojekt der DFG-Forschergruppe "Algorithmen, Struktur, Zufall", in der außerdem Projekte der Arbeitgruppen von Prof. Dr. Günter Ziegler (TU Berlin), Prof. Dr. Martin Grötschel (Zuse-Institut Berlin) und Prof. Dr. Hans-Jürgen Prömel (HU Berlin) gefördert werden. In diesem letzten Jahr der Förderperiode werden insbesondere Beispiele untersucht, die eine Vermutung von Mihail und Vazirani über die Expansionseigenschaften der Graphen von 0/1-Polytopen unterstützen. Ein Beweis dieser Vermutung hätte weitreichende Folgen für das algorithmische Zählen komplexer kombinatorischer Objekte.
Symmetrien in der Ganzzahligen Linearen Optimierung
Laufzeit: 01.07.2006 bis 31.12.2007
Ganzzahlige Lineare Modelle werden für eine Vielzahl von Optimierungsproblemen verwendet. Häufig weisen diese Modelle eine hohe ymmetrie auf, die dazu führt, dass Algorithmen unnötig viel Arbeit verrichten müssen. In diesem Projekt untersuchen wir Möglichkeiten, solche Symmetrien zu brechen und damit die Effizienz von Algorithmen für die zu lösenden Optimierungsprobleme deutlich zu steigern.
Maximum semidefinite and linear extension complexity of families of polytopes
Averkov, Gennadiy; Kaibel, Volker; Weltge, Stefan
In: Mathematical programming: Series A, Series B ; a publication of the Mathematical Programming Society - Berlin: Springer, 1971, Bd. 167.2018, 2, S. 381-394
Subgraph polytopes and independence polytopes of count matroids
Conforti, Michele; Kaibel, Volker; Walter, Matthias; Weltge, Stefan
In: Operations research letters: a journal of INFORMS devoted to the rapid publication of concise contributions in operations research - Amsterdam [u.a.]: Elsevier Science, Bd. 43.2015, 5, S. 457-460
In: Magdeburg: Univ., Fak. für Mathematik, 2009, Getr. Zählung, Ill., 29 cm - (Technical Report; Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg; 2009,2)
Extended formulations for packing and partitioning orbitopes
Faenza, Yuri; Kaibel, Volker
In: Mathematics of operations research / publ. quarterly by the Institute for Operations Research and the Management Sciences - Catonsville, MD: INFORMS, Bd. 34 (2009), 3, S. 686-697
2008
A short proof of the VPN tree routing conjecture on ring networks
Grandoni, Fabrizio; Kaibel, Volker; Oriolo, Gianpaolo; Skutella, Martin
In: Operations research letters . - Amsterdam [u.a.] : Elsevier, Bd. 36.2008, 3, S. 361-365
Kaibel, Volker; Peinhardt, Matthias; Pfetsch, Marc E.
In: Integer programming and combinatorial optimization: 12th International IPCO Conference, Ithaca, NY, USA, June 25 - 27, 2007 ; proceedings / Matteo Fischetti; David P. Williamson (eds.) - Berlin: Springer, 2007 . - 2007, S. 74-88 - (Lecture notes in computer science; 4513)
Kooperationen
Keine Daten im Forschungsportal hinterlegt.
Profil
Mein wissenschaftliches Arbeitsgebiet ist die Diskrete Mathematik mit starker Betonung der Aspekte Optimierung und Geometrie. Zum Anwedungsspektrum diskreter Optimierungsmethoden zählen u.a. Telekommunikation, Verkehrsplanung oder Logistik. Als Faustregel kann dienen: Diskrete Optimierung braucht man immer dann, wenn es für eine Aufgabe zu viele Lösungsmöglichkeiten gibt, um diese alle auszuprobieren und ihre Qualität zu vergleichen. Mathematische Analyse des Problems kann hier zu ungeahnten Verbesserungsmöglichkeiten führen.
Service
Wenn Sie ein Planungsproblem haben, für das Sie keinen Weg sehen, wie man es optimal oder möglichst gut lösen kann, würden Mitglieder meiner Arbeitsgruppe und ich uns gerne mit Ihnen zusammen setzen, um auszuloten, ob mathematische Optimierung bei der Lösung hilfreich sein kann. Gegebenenfalls sind wir sehr an der Durchführung von gemeinsamen Projekten interessiert, in deren Verlauf Algorithmen und auch Software für Ihre Probleme entwickelt werden.
Vita
Since 2007
Professor (W3) for Mathematical Optimization at Otto-von-Guericke Universität Magdeburg
2006
Visiting Professor at TU Berlin
2003-2006
Privatdozent at TU Berlin
2005-2006
Deputy head of the Department for Optimization at Zuse-Institute Berlin (ZIB)
2003-2004
Head of the Junior Research Group Optimization at the DFG Research Center MATHEON, Berlin
2003-2004
Member of the Executive Board of the DFG Research Center MATHEON, Berlin
2005-2006
Scientist in Charge for Application Area B Logistics, Traffic and Telecommunication Networks of the DFG Research Center MATHEON, Berlin
2003
Visitor at the Mathematical Sciences Research Institute (MSRI), Berkeley (October-November)
1999-2003
Researcher (Wissenschaftlicher Mitarbeiter) at TU Berlin (with Günter M. Ziegler)
2002
Habilitation (Mathematics) at TU Berlin
1993-1999
Researcher (Wissenschaftlicher Mitarbeiter) at Universität zu Köln (with Michael Jünger)
1997
Doctoral Degree (Dr. rer. nat.) at Universität zu Köln (Supervisor: Michael Jünger, Thesis: Polyhedral Combinatorics of the Quadratic Assignment Problem)
1993
Diploma (Mathematics) at Universität zu Köln (Supervisor: Michael Jünger, Thesis: Delaunay-Triangulierungen in verschiedenen Metriken)
1989-1993
Student of Mathematics and Computer Science, Universität zu Köln
Presse
Mein wissenschaftliches Arbeitsgebiet ist die Diskrete Mathematik mit starker Betonung der Aspekte Optimierung und Geometrie. Zum Anwedungsspektrum diskreter Optimierungsmethoden zählen u.a. Telekommunikation, Verkehrsplanung oder Logistik. Als Faustregel kann dienen: Diskrete Optimierung braucht man immer dann, wenn es für eine Aufgabe zu viele Lösungsmöglichkeiten gibt, um diese alle auszuprobieren und ihre Qualität zu vergleichen. Mathematische Analyse des Problems kann hier zu ungeahnten Verbesserungsmöglichkeiten führen.
Letzte Änderung: 08.06.2023 - Ansprechpartner:
Webmaster